University of the West of Scotland

Module Descriptor

Session: 2024/25

Title of Module: Aerothermodynamics & Aircraft Propulsion							
Code: ENGG08029	SCQF Level: 8 (Scottish Credit and Qualifications Framework)	Credit Points: 20	ECTS: 10 (European Credit Transfer Scheme)				
School:	School of Computing Engineering and Physical Sciences						
Module Co-ordinator:	Dr Noorfazreena Kamaruddin						

Summary of Module

This module is designed to provide students with an understanding in the topics of thermodynamics, propulsion, and heat transfer within the context of aircraft systems. The module aims to show the importance of thermodynamics and heat transfer in the design/analysis of aircraft systems, with focus placed on aircraft propulsion systems.

Outcome 1 is intended to develop the student's understanding of key concepts in thermodynamics, including the first and second laws of thermodynamics, and the use of steam tables. Students will apply their understanding to analyse thermodynamic systems relevant to aircraft propulsion, such as compressors, turbines, and nozzles.

Outcome 2 is intended to provide the student with an understanding of the thermodynamics of gas turbine aircraft propulsion. The Brayton cycle will be analysed in detail.

Outcome 3 is intended to provide the student with an understanding of jet engine performance. The performance of turbojet, turbofan and turboprop engines will be examined, including estimation of key performance characteristics such as thrust.

Outcome 4 is intended to provide the student with an understanding of key concepts in heat transfer. Students will apply their understanding to analyse heat conduction and convection problems relevant to aircraft systems.

By undertaking this module, students will have the opportunity to develop their UWS Graduate Attributes (https://www.uws.ac.uk/current-students/your-graduate- attributes/), including critical thinking, problem solving, effective communication, autonomy and creativity.

Module Delivery Method								
Face-To- Face	Blended	Fully Online	HybridC	Hybrid 0	Work-Based Learning			
\boxtimes								
See Guidance Note for details.								

Campus(es) for Module Delivery The module will **normally** be offered on the following campuses / or by Distance/Online Learning: (Provided viable student numbers permit) (tick as appropriate) Distance/Online Ayr: Other: Paisley: Dumfries: Lanarkshire: London: Learning: \boxtimes

Term(s) for Module Delivery								
(Provided viable student numbers permit).								
Term 1 □ Term 2 ⊠ Term 3 □								

г

Learn At the	end of this mo	s: (maximum of 5 statements) dule the student will be able to:						
L1	Analyse thermodynamics problems relevant to mechanical and aircraft systems, including the use of tabulated data.							
L2	Solve problem	s in gas turbine thermodynamics.						
L3	Analyse and p performance a	redict jet engine performance, and the role this plays in aircraft and design.						
L4	Analyse heat t	ransfer problems relevant to mechanical and aircraft systems.						
Emple	Employability Skills and Personal Development Planning (PDP) Skills							
SCQF	SCQF Headings During completion of this module, there will be an opportunity to achieve core skills in:							
Knowledge and Understanding (K and U)		SCQF Level 8 Demonstrating a broad and integrated knowledge and understanding of the main areas of thermodynamics and heat transfer, and their importance for aircraft systems. Demonstrating a critical understanding of a selection of principal theories, principles, concepts and terminology.						
Practi Knowl Under	ce: Applied ledge and rstanding	SCQF Level 8 Use a selection of the principal skills, techniques, practices and/or materials associated with engineering and industrial tasks.						

	Practice routine searches for thermophysical data of fluids.					
Generic Cognitive skills	SCQF Level 8					
	Be able to compare suggested solutions with expected values.					
Communication, ICT and Numeracy	SCQF Level 8					
Skills	The ability to report in writing and orally on experimental findings.					
	Use a range of IT applications to facilitate calculations and provision of report and presentations.					
	Interpret and evaluation use it to design and	ate numerical and graphical data and analyse equipment and systems.				
Autonomy, Accountability and	SCQF Level 8					
Working with others	Take some respons resources.	sibility for use of appropriate data				
	Practice in ways which take account of own role and responsibilities.					
	Work under guidance with qualified practitioners.					
Pre-requisites:	Before undertaking this module the student should have undertaken the following:					
	Module Code: ENGG07002	Module Title: Applied Engineering Science				
	Other:					
Co-requisites	Module Code:	Module Title:				

*Indicates that module descriptor is not published.

Learning and Teaching						
The learning and teaching activity for this module include lectures, tutorials and problem based learning.						
Learning Activities During completion of this module, the learning activities undertaken to achieve the module learning outcomes are stated below:	Student Learning Hours (Normally totalling 200 hours): (Note: Learning hours					

	include both contact hours and hours spent on other learning activities)
Lecture/Core Content Delivery	18
Tutorial/Synchronous Support Activity	18
Laboratory	3
Independent Study	161
	Hours Total 200

**Indicative Resources: (eg. Core text, journals, internet access)

The following materials form essential underpinning for the module content and ultimately for the learning outcomes:

Access to appropriate laboratories.

Course notes and presentations will be provided. Texts:

Cengel, Y. A, J M Combala and R H Turner, Fundamentals of Thermal-Fluid Science, McGraw-Hill, 4th Edition, 2012

Dunn, D J, Fundamental Engineering Thermodynamics, Longman, 2001

Cengel, Y A and M A Boles, Thermodynamics: An Engineering Approach, McGraw-Hill, 7th Edition, 2010

Moran, M J et al, Principles of Engineering thermodynamics, John Wiley & Sons, 7th Edition, 2011

Eastop T D and McConkey A, Applied Thermodynamics for Engineering Technologies. 5th edition, Prentice Hall. 1993

Flack R D, Fundamentals of Jet Propulsion with Applications, 1st edition, Cambridge University Press, 2005

Rogers G F C and Mayhew Y R, 1992, Engineering Thermodynamics, Work and Heat Transfer, 4th edition, Longman, 1992

Frank P, Introduction to Heat Transfer, John Wiley, 5th edition, 2007

(**N.B. Although reading lists should include current publications, students are advised (particularly for material marked with an asterisk*) to wait until the start of session for confirmation of the most up-to-date material)

Attendance and Engagement Requirements

In line with the <u>Student Attendance and Engagement Procedure</u>: Students are academically engaged if they are regularly attending and participating in timetabled on-campus and online teaching sessions, asynchronous online learning activities, course-related learning resources, and complete assessments and submit these on time.

Equality and Diversity

The University's Equality, Diversity and Human Rights Procedure can be accessed at the following link: <u>UWS Equality, Diversity and Human Rights Code.</u>

(N.B. Every effort will be made by the University to accommodate any equality and diversity issues brought to the attention of the School)

Supplemental Information

Divisional Programme Board	Engineering and Physical Sciences			
Assessment Results (Pass/Fail)	Yes □No ⊠			
School Assessment Board	Engineering			
Moderator	Tony Leslie			
External Examiner	E Tingas			
Accreditation Details	This module is part of the IMechE accredited programmes BEng/Meng (Hons) Aircraft Engineering			
Changes/Version Number	Module name changed to " Aerothermodynamics & Aircraft Propulsion " to modernise the title and reflect industry descriptions of this content.			
	Module Coordinator changed to Dr Noorfazreena Kamaruddin from Stephanie Docherty. Module			
	Delivery Changed to Face-To-Face from Hybrid C.			
	Assessment text changed to reflect a consistency within the programmme.			
	Assessment weightings changed to reflect a more consistent programme assessment weightings.			

Assessment: (also refer to Assessment Outcomes Grids below)

Formative assessment will be provided in the form of class quizzes and

example problems during tutorial sessions and as part of preparation for written submissions.

Summative assessment will be in the form of one end of term an Unseen

Closed Book Class Test; one case study; and a thermodynamics laboratory. A

minimum overall 40% is required to achieve a pass in this module.

Summative Assessment Category 1:

Component 1 – Unseen Closed Book Class Test - 60% of the final mark.

Component 2 – Laboratory (15%) & Case Study (25%)

(N.B. (i) **Assessment Outcomes Grids** for the module (one for each component) can be found below which clearly demonstrate how the learning outcomes of the module will be assessed.

(ii) An **indicative schedule** listing approximate times within the academic calendar when assessment is likely to feature will be provided within the Student Module Handbook.)

Assessment Outcome Grids (See Guidance Note)

Component 1							
Assessme nt Type (Footnote B.)	Learning Outcome (1)	Learning Outcome (2)	Learning Outcome (3)	Learning Outcome (4)	Weighting (%) of Assessment Element	Timetabled Contact Hours	
Unseen Closed Book Class test (written)	\checkmark	\checkmark	\checkmark	\checkmark	60	2	

Component 2							
Assessme nt Type (Footnote B.)	Learning Outcome (1)	Learning Outcom e (2)	Learning Outcome (3)	Learning Outcome (4)	Weighting (%) of Assessment Element	Timetabled Contact Hours	
Case Study			~		25		
Laboratory/ Clinical/		\checkmark			15	2	

Field notebook						
	Со	mbined To	al for All Co	omponents	100%	4 hours