University of the West of Scotland

Module Descriptor

Session: 2024/25

Code: PHYS08006	SCQF Level: 8	Credit Points:	ECTS: 10			
Code. 1111500000	(Scottish Credit and Qualifications Framework)	20	(European Credit Transfer Scheme)			
School: School of Computing, Engineering and Physical Sciences						
Module Co-ordinator:	Ryan P Meeten					
Summary of Module						
This module is a core module programmes.	at Level 8 on Institute c	of Physics (IoP) acci	redited Physics			
This module is an essential me mathematical techniques and other physics modules. Physic understanding and solving diff applying key ideas of multivari	ideas required for unde ists need to be equippe erential equations, mar	rpinning the mather ed with the mathema	natical content of atical tools for			
The module will cover first ord integrating factors. It will also discussion of homogeneous a coefficients. A brief survey of r Riccati equations will be under introduced as alternative appre	cover second order line nd inhomogeneous cas named differential equa rtaken. Power series ar	ar differential equat es with constant an tions such as the Be	ions, including a d variable ernoulli and			
Key concepts in linear algebra operations and eigenvalues ar discuss orthonormal bases an independent quantities of trace	nd eigenvectors of matr d the Gram-Schmidt Pr	ices will be describe ocess. The ideas of	ed. We will			
We will explore functions of se and total derivatives. We will n geometrical properties. Double coordinate systems. A treatme integrals via Green's Theorem	neet the gradient of a s e integration will be cov ent of line integrals in th	calar field and desci ered in both Cartesi	ribe its an and polar			
The module will end with a brid including moments.	ef overview of the key e	essentials of probab	ility theory,			
We have defined a set of Grac	luate Attributes that are	the skills, personal	qualities and			

We have defined a set of Graduate Attributes that are the skills, personal qualities and understanding to be developed through your university experience that will prepare for life and work in the 21st century (https://www.uws.ac.uk/current-students/your-graduate-attributes/).

The Graduate Attributes relevant to this module are listed below.

- Graduate Attributes Academic: critical thinker; analytical; inquiring; knowledgeable; digitally literate; problem solver; autonomous; incisive; innovative.
- Graduate Attributes Personal: effective communicator; influential; motivated.
- Graduate Attributes Professional: collaborative; research-minded; enterprising; ambitious; driven.

Module Deliv	very Method						
Face-To- Face	Blended	Fully Online	HybridC	Hybrid 0	Work-Based Learning		
\boxtimes							

See Guidance Note for details.

Campus(es) for Module Delivery

The module will **normally** be offered on the following campuses / or by Distance/Online Learning: (Provided viable student numbers permit) (tick as appropriate)

Paisley:	Ayr:	Dumfries:	Lanarkshire:	London:	Distance/Online Learning:	Other:
						Add name

Term(s) for Module Delivery							
(Provided viat	(Provided viable student numbers permit).						
Term 1 🛛 Term 2 🗆 Term 3 🗆							

These appro	Learning Outcomes: (maximum of 5 statements) These should take cognisance of the SCQF level descriptors and be at the appropriate level for the module. At the end of this module the student will be able to:						
L1	Classify and solve differential equations using a range of techniques						
L2	Manipulate matrices and work with eigenvalues and eigenvectors						
L3	Understand and apply concepts from differential and integral multivariable L3 calculus						
L4	L4 Apply the essentials of probability theory						

Employability Skills and Personal Development Planning (PDP) Skills					
SCQF Headings	During completion of achieve core skills in:	this module, there will be an opportunity to			
Knowledge and Understanding (K and U)		Mathematical techniques that are essential for physics, including differential equations, linear algebra and multivariable			
Practice: Applied Knowledge and Understanding	SCQF Level 8 Routine mathematica physics problems.	I skills and methods tom model and solve			
Generic Cognitive skills	suitable for SCQF	ations efficiently and accurately at a level - Level 8 and logical arguments			
Communication, ICT and Numeracy Skills	 SCQF Level 8 Presenting mathematical arguments in a clear and coherent manner. A range of numerical and graphical approaches to the solution of differential equations 				
Autonomy, Accountability and Working with others	 SCQF Level 8 Group working will encourage collaboration and the demonstration of academic integrity. Exercising initiative and independence in carrying out defined activities Taking account of own and others' roles and responsibilities in carrying out and evaluating tasks. 				
Pre-requisites:	Before undertaking th undertaken the follow	is module, the student should have ring:			
	Module Code:Module Title:PHYS07006Introductory Physics APHYS07007Introductory Physics BMATH07003Applied MathematicsMATH07009Mathematical Analysis				
Co-requisites	Other: Module Code:	or equivalent Module Title:			

*Indicates that module descriptor is not published.

Learning and Teaching

In line with current learning and teaching principles, a 20-credit module includes 200 learning hours, normally including a minimum of 36 contact hours and maximum of 48 contact hours.

The module will be delivered using a modernised "chalk and talk" style so that the mathematical ideas presented are shown at a pace that can be maximally absorbed and understood. The theory sessions will be augmented with some pre-recorded enrichment material for those who are interested in delving in more depth into the topics presented.

The tutorial sessions will be conducted in a white-wall learning studio, allowing the students to experience working in groups in an authentic problem solving setting. Problem solving is a practical task, where clear communication and teamwork is often required to assess, deconstruct, analyse, synthesise and critique a solution.

Learning Activities During completion of this module, the learning activities undertaken to achieve the module learning outcomes are stated below:	Student Learning Hours (Normally totalling 200 hours): (Note: Learning hours include both contact hours and hours spent on other learning activities)
Lecture/Core Content Delivery	36
Practice Based Learning	12
Independent Study	152
	200 Hours Total

**Indicative Resources: (eg. Core text, journals, internet access)

The following materials form essential underpinning for the module content and ultimately for the learning outcomes:

Riley, Hobson and Bence – "Mathematical Methods for Physics and Engineering: A Comprehensive Guide" (Third Edition)

(**N.B. Although reading lists should include current publications, students are advised (particularly for material marked with an asterisk*) to wait until the start of session for confirmation of the most up-to-date material)

Attendance and Engagement Requirements

In line with the <u>Student Attendance and Engagement Procedure</u>: Students are academically engaged if they are regularly attending and participating in timetabled on-campus and online teaching sessions, asynchronous online learning activities, course-related learning resources, and complete assessments and submit these on time.

Equality and Diversity

The University's Equality, Diversity and Human Rights Procedure can be accessed at the following link: <u>UWS Equality</u>, <u>Diversity and Human Rights Code</u>.

Please ensure any specific requirements are detailed in this section. Module Coordinators should consider the accessibility of their module for groups with protected characteristics.

(N.B. Every effort will be made by the University to accommodate any equality and diversity issues brought to the attention of the School)

Supplemental Information

Divisional Programme Board	Engineering and Physical Sciences
Assessment Results (Pass/Fail)	Yes □No ⊠
School Assessment Board	Physical Sciences
Moderator	Gregory V Morozov
External Examiner	D Faux
Accreditation Details	Institute of Physics (IoP)
Changes/Version Number	3.0 Module descriptor amended to conform to the new template format and to reflect outcomes from ILR 2023. The module has been updated to mitigate the loss of core material displaced by ASPIRE 2.

Assessment: (also refer to Assessment Outcomes Grids below)

Assessment 1 – Class Test (60%)

Assessment 2 – Written Coursework (40%)

(N.B. (i) **Assessment Outcomes Grids** for the module (one for each component) can be found below which clearly demonstrate how the learning outcomes of the module will be assessed.

(ii) An **indicative schedule** listing approximate times within the academic calendar when assessment is likely to feature will be provided within the Student Module Handbook.)

Assessment Outcome Grids (See Guidance Note)

Component 1						
Assessment Type (Footnote B.)	Learning Outcome (1)	Learning Outcome (2)	Learning Outcome (3)	Learning Outcome (4)	Weighting (%) of Assessment Element	Timetabled Contact Hours
Class Test	~	~	~		60	2

Component 2						
Assessment Type (Footnote B.)	Learning Outcome (1)	Learning Outcome (2)	Learning Outcome (3)	Learning Outcome (4)	Weighting (%) of Assessment Element	Timetabled Contact Hours
Portfolio of Written Work	✓	<	~	~	40	0
Combined Total for All Components					100	2