University of the West of Scotland

Module Descriptor

Session: 2024/25

Code: ENGG090	Unit Operations 1 038	SCQF Level: 9 (Scottish Credit and Qualifications Fram	t l	t Points: 2	0 ECTS: 10 (European Credit Transfer Scheme)		
School:		School of Computing, Engineering and Physical Sciences					
Module Co-ordii	nator:	Li Sun					
Summary of Mo	dule	1					
separation proce	is to give students o esses that are key t processes studied h	o the process ind		grees a broa	ad appreciation of several		
 Evaporation for energy s analysis). Crystallisation 	n (including single- o aving, such as vap	effect and multi-e our recompressic	on and vacuum	operation,	point rise , and other designs , with basic economic		
 phase rule, bub flash equation, Various solid thickening. Membrane solid Mixing of liquids use of baffles and 	and shortcut and rig d separation proces separations. s examines the calc nd choice of impelle	calculations for id gorous distillation sses, including se culation of power ers.	eal and non-ic calculations. edimentation, e requirements	leal mixture elutriation, a of mixers vi	es, the use of the isothermal and centrifugation, and a dimensionless analysis, the		
 phase rule, bub flash equation, a Various solid thickening. Membrane s Mixing of liquids use of baffles and During the course (https://www.uws) thinking and ana 	and shortcut and rig d separation proces separations. s examines the calc nd choice of impelle se of this module st s.ac.uk/current-stuc	calculations for id gorous distillation sses, including se culation of power ers. udents will develo dents/your-gradua nind; Work-Ready	eal and non-ic calculations. edimentation, e requirements op their UWS (ate-attributes/	leal mixture elutriation, a of mixers vi Graduate Af). Universal	es, the use of the isothermal and centrifugation, and a dimensionless analysis, the ttributes		
 phase rule, bub flash equation, a Various solid thickening. Membrane s Mixing of liquids use of baffles and During the course (https://www.uws) thinking and ana 	and shortcut and rig d separations. s examines the calc nd choice of impelle se of this module st s.ac.uk/current-stuc alytical & inquiring n onomous, driven ar	calculations for id gorous distillation sses, including se culation of power ers. udents will develo dents/your-gradua nind; Work-Ready	eal and non-ic calculations. edimentation, e requirements op their UWS (ate-attributes/	leal mixture elutriation, a of mixers vi Graduate Af). Universal	es, the use of the isothermal and centrifugation, and a dimensionless analysis, the ttributes l: Academic attributes - critical		
phase rule, bub flash equation, Various solie thickening. Membrane s Mixing of liquids use of baffles a During the cours (https://www.uws thinking and ana Successful : auto	and shortcut and rig d separations. s examines the calc nd choice of impelle se of this module st s.ac.uk/current-stuc alytical & inquiring n onomous, driven ar	calculations for id gorous distillation sses, including se culation of power ers. udents will develo dents/your-gradua nind; Work-Ready	eal and non-ic calculations. edimentation, e requirements op their UWS (ate-attributes/	leal mixture elutriation, a of mixers vi Graduate Af). Universal	es, the use of the isothermal and centrifugation, and a dimensionless analysis, the ttributes I: Academic attributes - critical afe laboratory working;		

See Guidance Note for details.

Campus(es) for Module Delivery								
The module will normally be offered on the following campuses / or by Distance/Online Learning: (Provided viable student numbers permit) (tick as appropriate)								
Paisley:	Ayr:	Dumfries:	Lanarkshire:	London:	Distance/Online Learning:	Other:		
⊠ □ □ □ □ □ Add name								

Term(s) for Module Delivery

(Provid	(Provided viable student numbers permit).						
Term 1	□ Term 2 ⊠ Term 3 □						
These level fe	Learning Outcomes: (maximum of 5 statements) These should take cognisance of the SCQF level descriptors and be at the appropriate level for the module. At the end of this module the student will be able to:						
L1	Identify, analyse and size separation processes using experimental, tabulated, literature and other numerical data.						
L2	Discuss critically the selection of appropriate equipment for the separation of materials in process plant, with appreciation that the products may present hazards that the original materials did not.						
L3	Demonst safety gu	•	ain and critically e	valuate experimen	tal data by set pro	cedures and	

Employability Skills and Personal Development Planning (PDP) Skills				
SCQF Headings	During completion of this module, there will be an opportunity to achieve core skills in:			
Knowledge and Understanding (K and U)	SCQF Level 9. Demonstrating a broad and integrated knowledge and understanding of evaporators, crystallisers, dryers, distillation columns and solids separators, demonstrating a critical understanding of a selection of their principal theories, principles, concepts and terminology			
Practice: Applied Knowledge and Understanding	 SCQF Level 9. Use algebraic techniques to design appropriate separators with the correct dimensions. Use graphical techniques to design appropriate separators with the correct dimensions. Use iterative numerical techniques to design appropriate separators with the correct dimensions. Practice routine searches for thermophysical data of fluids 			
Generic Cognitive skills	SCQF Level 9. Undertake critical analysis and derivation of distillation formulae from first principles Be able to compare suggested solutions with expected values			

Communication, ICT and Numeracy Skills	 SCQF Level 9. Make formal presentations on pilot plant data to an audience of peers Use a range of IT applications to facilitate calculations and provision of report and presentations Interpret, use and evaluate numerical and graphical data to realize calculations in sizing of equipment 		
Autonomy, Accountability and Working with others	SCQF Level 9. Take some responsibility for use of appropriate data resources Practice in ways which take account of own role and responsibilities Work under guidance with gualified practitioners		
Pre-requisites:	Before undertaking this module the student should have undertaken the following:		
	Module Code: ENGG09037	Module Title: Chemical Process Principles	
	Other:	or suitable alternative	
Co-requisites	Module Code:	Module Title:	

Learning and Teaching				
This module covers a wide variety of theoretical, conceptual and practical areas, which require a range of knowledge and skills to be displayed and exercised. Delivery of its syllabus content therefore involves a diversity of teaching and assessment methods suitable to the learning outcomes of the module; these include formal lectures, structured tutorials (work closely integrated with the lecture material), laboratory exercises to develop practical skills and familiarisation with equipment and experimental techniques, industrial process plant visit trip, completion and submission of written and oral coursework making use of appropriate forms of IT and VLE, and independent study.				
Learning Activities During completion of this module, the learning activities undertaken to achieve the module learning outcomes are stated below:	Student Learning Hours (Normally totalling 200 hours): (Note: Learning hours include both contact hours and hours spent on other learning activities)			
Lecture/Core Content Delivery	24			
Tutorial/Synchronous Support Activity	12			
Laboratory/Practical Demonstration/Workshop	12			
Independent Study	152			
	200 Hours Total			

**Indicative Resources: (eg. Core text, journals, internet access)

The following materials form essential underpinning for the module content and ultimately for the learning outcomes:

C.J. Geankoplis, A H Hersel and D H Lepek, Transport Processes and Separation Process Principles Prentice Hall, 5th Edition, 2018

W. McCabe, J. C. Smith, and P. Harriott, Unit Operations of Chemical Engineering, McGraw Hill, 7th Edition, 2014

J. F. Richardson, J. R. Harker, and J. R. Backhurst, Chemical Engineering Particle Technology and Separation Processes-Volume 2, Butterworth Heinemann, 5th Edition, 2002

R. Sinnott and G. Towler, Chemical Engineering Design: SI Edition, Butterworth-Heinemann, 6th Edition, 2019

G. F. C.Rogers and Y. R. Mayhew, Thermodynamic and Transport Properties of Fluids, Blackwell, 5th Edition, 1994

E. R. Henley, J. D. Seader, and D. K. Roper, Separation Process Principles, Wiley, 4th Edition, 2016

(**N.B. Although reading lists should include current publications, students are advised (particularly for material marked with an asterisk*) to wait until the start of session for confirmation of the most up-to-date material)

Equality and Diversity

The University's Equality, Diversity and Human Rights Procedure can be accessed at the following link: <u>UWS Equality, Diversity and Human Rights Code.</u>

Please ensure any specific requirements are detailed in this section. Module Co-ordinators should consider the accessibility of their module for groups with protected characteristics.

(N.B. Every effort will be made by the University to accommodate any equality and diversity issues brought to the attention of the School)

Supplemental Information

Programme Board	Engineering
Assessment Results (Pass/Fail)	Yes □No ⊠
Subject Panel	Engineering
Moderator	Cristina Rodriguez
External Examiner	R Ocone

Accreditation Details	TThis module is part of the BEng (Hons) Chemical Engineering accredited by IChemE
Version Number	4 Assessment updated

Assessment: (also refer to Assessment Outcomes Grids below)

Assessment for the module includes both formative and summative assessment.

Formative assessment is provided during lectures in the form of class exercise problems, during tutorial sessions, during laboratory sessions and as part of the preparation for written submissions.

Summative assessment will be based on the following:

(a) Unseen Closed Book Class Test worth 50% of the final mark, and

(b) continuous assessment worth 50% of the final mark.

The continuous assessment component in this module will consist of the following elements:

- (i) written assignment worth 25% of the final mark,
- (ii) laboratory reports worth 25% of the final mark

Further details, and the academic calendar when assessment is likely to feature, will be provided within the Module Information Pack.

(N.B. (i) **Assessment Outcomes Grids** for the module (one for each component) can be found below which clearly demonstrate how the learning outcomes of the module will be assessed.

(ii) An **indicative schedule** listing approximate times within the academic calendar when assessment is likely to feature will be provided within the Student Handbook.)

Assessment Outcome Grids (See Guidance Note)

Component 1					
Assessment Type (Footnote B.)	Learning Outcome (1)	Learning Outcome (2)	Learning Outcome (3)	Weighting (%) of Assessment Element	Timetabled Contact Hours
Unseen Closed Book Class Test	\checkmark	\checkmark		50	2

Component 2					
Assessment Type (Footnote B.)	Learning Outcome (1)	Learning Outcome (2)	Learning Outcome (3)	Weighting (%) of Assessment Element	Timetabled Contact Hours
Design/ Diagram/ Drawing/ Photograph/ Sketch	~	~	~	25	0
Report of practical/ field/ clinical work	~	~	~	25	0

Combined Total For All	100%	2 hours
components		