University of the West of Scotland

Module Descriptor

Session: 2024/25

Title of Module: Mathematics for Physics 2							
Code: PHYS09012	SCQF Level: 9 (Scottish Credit and Qualifications Framework)	Credit Points: 20	ECTS: 10 (European Credit Transfer Scheme)				
School:	School of Comput Sciences	ng, Engineering a	nd Physical				
Module Co-ordinator:	Ryan P Meeten						
Summary of Module							
This module is a core module at programmes.	Level 9 on Institute of	f Physics (IoP) accr	edited Physics				
This module is an essential mod	dule for all students of	physics.					
The module will begin with a practical treatment of complex variable theory with particular emphasis on the application of the Calculus of Residues for evaluating definite real integrals.							
We will then discuss Fourier Analysis, beginning with Fourier series in both trigonometric and exponential forms. The Fourier transform (and its inverse) will be presented. A brief discussion on the Inverse Laplace transform via the Bromwich integral will be considered. The concept of convolution and the convolution theorem will be presented.							
The module will also cover the fundamentals of vector calculus required for the study of electromagnetism and field theory. In particular, the concepts of gradient, divergence and curl, including coordinate free definitions of divergence and curl will be discussed. We will also explore vector calculus versions of the Fundamental Theorem of Calculus i.e. Gradient theorem, Divergence theorem and the Circulation theorem. vector calculus will be presented in the standard coordinate systems (Cartesian, cylindrical and spherical).							
We have defined a set of Graduate Attributes that are the skills, personal qualities and understanding to be developed through your university experience that will prepare for life and work in the 21st century (https://www.uws.ac.uk/current- students/your-graduate-attributes/). The Graduate Attributes relevant to this module are listed below.							
Graduate Attributes - Acade digitally literate; problem sol			nowledgeable;				

- Graduate Attributes Personal: effective communicator; influential; motivated
- Graduate Attributes Professional: collaborative; research-minded; enterprising; ambitious; driven

Module Delivery Method							
Face-To- FaceBlendedFully OnlineHybridCHybrid0Work-Based Learning							
\boxtimes							
See Guidance Note for details.							

Campus(es) for Module Delivery

The module will **normally** be offered on the following campuses / or by Distance/Online Learning: (Provided viable student numbers permit) (tick as appropriate)

Paisley:	Ayr:	Dumfries:	Lanarkshire:	London:	Distance/Online Learning:	Other:
\boxtimes						Add name

Term(s) for Module Delivery							
(Provided viable student numbers permit).							
Term 1 🛛 Term 2 🗆 Term 3 🗆							

These appro	Learning Outcomes: (maximum of 5 statements) These should take cognisance of the SCQF level descriptors and be at the appropriate level for the module. At the end of this module the student will be able to:					
L1	Appreciate and	d apply the central results of complex variable theory				
L2	Understand ar	nd calculate Fourier series and transforms				
L3	Manipulate vector calculus operators and understand the physical significance of vector fields					
L4	Fluently use alternative coordinate systems to solve problems					
Emplo	oyability Skills	and Personal Development Planning (PDP) Skills				
SCQF	SCQF Headings During completion of this module, there will be an opportunity to achieve core skills in:					
Under	Knowledge and Understanding (K and U) Mathematical techniques that are essential for physics, including contour integration, Fourier series and transforms and vector calculus.					

Practice: Applied Knowledge and Understanding	SCQF Level 9 Routine mathematica physics problems.	Routine mathematical skills and methods to model and solve physics problems.		
Generic Cognitive skills	 SCQF Level 9 Performing calculations efficiently and accurately at a level suitable for SCQF Level 9 Presenting clear and logical arguments Demonstrating appropriate mathematical maturity 			
Communication, ICT and Numeracy Skills	 SCQF Level 9 Presenting mathematical arguments in a clear and coherent manner. Effective use of a computer algebra system. 			
Autonomy, Accountability and Working with others	SCQF Level 9 Group working will encourage collaboration and the demonstration of academic integrity. Exercising initiative and independence in carrying out defined activities Taking account of own and others' roles and responsibilities in carrying out and evaluating tasks.			
Pre-requisites:	Before undertaking th undertaken the follow	his module, the student should have <i>r</i> ing:		
	Module Code: PHYS08002Module Title: Optics & ElectronicsPHYS08004Properties of MatterPHYS08006Mathematics for Physics 1PHYS08007Classical MechanicsPHYS08009Modern PhysicsOther:or equivalent			
Co-requisites	Module Code:	Module Title:		

*Indicates that module descriptor is not published.

Learning and Teaching

In line with current learning and teaching principles, a 20-credit module includes 200 learning hours, normally including a minimum of 36 contact hours and maximum of 48 contact hours.

The module will be delivered using a modernised "chalk and talk" style so that the mathematical ideas presented are shown at a pace that can be maximally absorbed and understood. The theory sessions will be augmented with some pre-recorded

enrichment material for those who are interested in delving in more depth into the topics presented.

The tutorial sessions will be conducted in a white-wall learning studio, allowing the students to experience working in groups in an authentic problem solving setting. Problem solving is a practical task, where clear communication and teamwork is often required to assess, deconstruct, analyse, synthesise and critique a solution.

Learning Activities During completion of this module, the learning activities undertaken to achieve the module learning outcomes are stated below:	Student Learning Hours (Normally totalling 200 hours): (Note: Learning hours include both contact hours and hours spent on other learning activities)
Lecture/Core Content Delivery	24
Practice Based Learning	24
Independent Study	152
	200 Hours Total

**Indicative Resources: (eg. Core text, journals, internet access)

The following materials form essential underpinning for the module content and ultimately for the learning outcomes:

Riley, Hobson and Bence – "Mathematical Methods for Physics and Engineering: A Comprehensive Guide" (Third Edition)

(**N.B. Although reading lists should include current publications, students are advised (particularly for material marked with an asterisk*) to wait until the start of session for confirmation of the most up-to-date material)

Attendance and Engagement Requirements

In line with the <u>Student Attendance and Engagement Procedure</u>: Students are academically engaged if they are regularly attending and participating in timetabled on-campus and online teaching sessions, asynchronous online learning activities, course-related learning resources, and complete assessments and submit these on time.

Equality and Diversity

The University's Equality, Diversity and Human Rights Procedure can be accessed at the following link: <u>UWS Equality, Diversity and Human Rights Code.</u>

Please ensure any specific requirements are detailed in this section. Module Coordinators should consider the accessibility of their module for groups with protected characteristics. (N.B. Every effort will be made by the University to accommodate any equality and diversity issues brought to the attention of the School)

Supplemental Information

Divisional Programme Board	Engineering and Physical Sciences
Assessment Results (Pass/Fail)	Yes □No ⊠
School Assessment Board	Physical Sciences
Moderator	Maximilien Barbier
External Examiner	D Faux
Accreditation Details	Institute of Physics (IoP)
Changes/Version Number	3.0 Module descriptor amended to conform to the new template format and to reflect outcomes from ILR 2023. The module has been updated to mitigate the loss of core
	material displaced by ASPIRE 2.

Assessment: (also refer to Assessment Outcomes Grids below)

Assessment 1 – Class Test (60%)

Assessment 2 – Written Coursework (40%)

(N.B. (i) **Assessment Outcomes Grids** for the module (one for each component) can be found below which clearly demonstrate how the learning outcomes of the module will be assessed.

(ii) An **indicative schedule** listing approximate times within the academic calendar when assessment is likely to feature will be provided within the Student Module Handbook.)

Assessment Outcome Grids (See Guidance Note)

Component 1						
Assessment Type (Footnote B.)	Learning Outcome (1)	Learning Outcome (2)	Learning Outcome (3)	Learning Outcome (4)	Weighting (%) of Assessment Element	Timetabled Contact Hours
Class Test	~	~	~	~	60	2

Component 2						
Assessment Type (Footnote B.)	Learning Outcome (1)	Learning Outcome (2)	Learning Outcome (3)	Learning Outcome (4)	Weighting (%) of Assessment Element	Timetabled Contact Hours
Portfolio of Written Work	✓	<	~	~	40	0
	Combined Total for All Components					2