University of the West of Scotland

Module Descriptor

Session: 2024/25

Title of Module: Chemical Reactor Engineering						
Code: ENGG10033	SCQF Level: 10 (Scottish Credit and Qualifications Framework)	Credit Points: 20	ECTS: (European Credit Transfer Scheme) 10			
School:	School of Comput Sciences	School of Computing, Engineering and Physical Sciences				
Module Co-ordinator:	Cristina Rodriguez	Cristina Rodriguez				

Summary of Module

This module addresses the major step(s) at the heart of most chemical processes, i.e. chemical reactor design.

The module reviews the fundamental concepts of thermodynamics and kinetics relevant to chemical reactors design and the different types of reactors that are likely to be encountered in the course of designing a chemical process. The students are then introduced to the digital techniques required to carry out mass and energy balances for reactors other than ideal ones.

This module addresses the major step(s) at the heart of most chemical processes, i.e. chemical reactor design.

The module reviews the fundamental concepts of thermodynamics and kinetics relevant to chemical reactors design and the different types of reactors that are likely to be encountered in the course of designing a chemical process. The students are then introduced to the digital techniques required to carry out mass and energy balances for reactors other than ideal ones.

The subject of catalysis is covered in depth and topics such as mechanisms and kinetics of catalytic reactions, catalysts classification, formulation, preparation, structure, surface area, pore size distribution, adsorption, mass and heat transfer in catalytic reactors, resistances, diffusion, pore models, effectiveness factor, catalyst deactivation and regeneration are discussed. Fluidization is also covered.

Mass transfer with chemical reaction in multiphase systems will provide the introduction to the discussion of the design of fixed-bed catalytic reactors and transport reactors as well as other types of multiphase reactors.

Module Delivery Method						
Face-To- Face	Blended	Fully Online	HybridC	Hybrid 0	Work-Based Learning	

\boxtimes							

See Guidance Note for details.

Campus(es) for Module Delivery

The module will **normally** be offered on the following campuses / or by Distance/Online Learning: (Provided viable student numbers permit) (tick as appropriate)

Paisley:	Ayr:	Dumfries:	Lanarkshire:	London:	Distance/Online Learning:	Other:
\boxtimes						Add name

Term(s) for Module Delivery							
(Provided viable student numbers permit).							
Term 1 Image: Marcolar matrix Term 2 Image: Term 3 Image:							

These appro	Learning Outcomes: (maximum of 5 statements) These should take cognisance of the SCQF level descriptors and be at the appropriate level for the module. At the end of this module the student will be able to:						
L1		Identify the details of the necessary reaction step(s) of a chemical process and select the type(s) of reactor(s) to be used for different processes,					
L2	Show a critical u	understanding of the role of catalysis in chemical processing.					
L3	Carry out design calculations of chemical reactors integrating theories, concepts and principles.						
L4	Demonstrate a critical understanding of the reasons why the safety, environmental and economic constraints make the reaction step a crucial part of the overall process						
Empl	oyability Skills	and Personal Development Planning (PDP) Skills					
	SCQF Headings During completion of this module, there will be an opportunity to achieve core skills in:						
SCQF	- Headings						
Know	ledge and rstanding (K						

Co-requisites	Module Code:	Module Title:		
	Other: Or, any other suitable prior learning			
	Module Code: ENGG0937Module Title: Chemical Process Principles			
Pre-requisites:	Before undertaking the undertaken the follow	nis module the student should have ving:		
Autonomy, Accountability and Working with others	SCQF Level 10 Working effectively with others in team in laboratory sessions. Identifying and addressing individual learning needs in the subject area associated with the module.			
Communication, ICT and Numeracy Skills	SCQF Level 10 Use of both general purpose and specialist chemical engineering software to analyse and specify reactor equipment details. Communicate results of laboratory investigation in report format.			
Generic Cognitive skills	SCQF Level 10 The ability to gather information from different sources and in different formats and its use in making sound judgement about the design, operation and monitoring of chemical reactors.			
	Carry out practical experiments to analyse the performance of chemical reactors.			

*Indicates that module descriptor is not published.

Learning and Teaching

In line with current learning and teaching principles, a 20-credit module includes 200 learning hours, normally including a minimum of 36 contact hours and maximum of 48 contact hours.

Learning Activities During completion of this module, the learning activities undertaken to achieve the module learning outcomes are stated below:	Student Learning Hours (Normally totalling 200 hours): (Note: Learning hours include both contact hours and hours spent on other learning activities)
Lecture/Core Content Delivery	12
Tutorial/Synchronous Support Activity	24
Laboratory/Practical Demonstration/Workshop	12
Independent Study	152

	200 Hours Total				
**Indicative Resources: (eg. Core text, journals, internet access)					
The following materials form essential underpinning for the module content and ultimately for the learning outcomes:					
H. Scott Fogler, Essentials of Chemical Reaction Engineering, ,2016.	Pearson Education, 5th Edition				
O. Levenspiel, Chemical Reaction Engineering (3rd edition), J	ohn Wiley & Sons 1999.				
S.J.Thomson and G. Webb, Heterogeneous Catalysis, Edinbu	rgh : Oliver & Boyd, 1968.				
B. Gates, Catalytic chemistry, New York : Wiley, 1992.					
Hill, C. G. and T W Root, Introduction to Chemical Engineering Kinetics and Reactor Design, 2nd Edition, Wiley, 2014					
(**N.B. Although reading lists should include current pub advised (particularly for material marked with an asterisk session for confirmation of the most up-to-date material)	(*) to wait until the start of				
Attendance and Engagement Requirements					
In line with the <u>Student Attendance and Engagement Pro</u> academically engaged if they are regularly attending and on-campus and online teaching sessions, asynchronous course-related learning resources, and complete assess time.	participating in timetabled online learning activities,				
Equality and Diversity					
The University's Equality, Diversity and Human Rights P the following link: <u>UWS Equality, Diversity and Human R</u>					
(N.B. Every effort will be made by the University to accordiversity issues brought to the attention of the School)	mmodate any equality and				

Supplemental Information

Divisional Programme Board	Engineering
Assessment Results (Pass/Fail)	Yes □No ⊠
School Assessment Board	Engineering
Moderator	Li Sun

External Examiner	R. Ocone
Accreditation Details	This module is part of the BEng(Hons) Chemical Engineering programme accredited by the IChemE.
Changes/Version Number	3.1Updated module summary3.2
	Updated Module Delivery Method to Face-to-Face

Assessment: (also refer to Assessment Outcomes Grids below)

Assessment will be based on the following:

Assessment 1 - final written class test worth 70% of the final mark

Assessment 2 - continuous assessment worth 30% of the final mark and consists of written assignment(s)/report(s), laboratory exercises and design problem(s).

(N.B. (i) **Assessment Outcomes Grids** for the module (one for each component) can be found below which clearly demonstrate how the learning outcomes of the module will be assessed.

(ii) An **indicative schedule** listing approximate times within the academic calendar when assessment is likely to feature will be provided within the Student Module Handbook.)

Assessment Outcome Grids (See Guidance Note)

Component 1						
Assessment Type (Footnote B.)	Learning Outcome (1)		-	Learning Outcome (4)	Weighting (%) of Assessment Element	Timetabled Contact Hours
Unseen open book		х	Х	Х	70	3

Component 2						
Assessme nt Type (Footnote B.)	Learning Outcome (1)	Learning Outcome (2)	Learning Outcome (3)	Learning Outcome (4)	Weighting (%) of Assessment Element	Timetabled Contact Hours
Design	Х		X		10	0
Laboratory	x		X		10	3
Review/ Article/ Critique/ Paper		x		х	10	0
Combined Total for All Components					100%	6 hours